

If you are a student that **HAS** access to technology, this is not the packet for you. This packet is for students who pick up and drop off their work at the front office every week. If you have access to technology, please go back to your teacher's website and complete the correct assignment.

Name	ame: Period: Teach	ner:
	Distance Learning Week 7 Paper Pack 5/18/2020 – 5/24/2020	et
As	Assignment 7.1 - INTRODUCTION TO THE MOLE RAT	TIO & STOICHIOMETRY
	atriot Pack Cookie Recipe: • 3 cups dough + 1 cup chocolate chips → 15 cookies dditional Information for the recipe: • 1 cup of dough weighs 200.00 grams • 1 cup chocolate chips has 100. chips in it.	
Use the	se the recipe and the additional information to answer the questions below.	
1.	1. How many cookies can you make from 6.00 cups dough, assuming an as many chips as you need to make the cookies)?	excess of chips (that means you have
2.	2. How many cookies can you make from 4.00 cups of chips, assuming ex	xcess of dough?
3.	3. How many cookies can you make from 17.5 cups of dough, assuming a	an excess of chips?
4.	4. How many cookies can you make from 18.0 cups of dough and 6.00 cu	ips of chips?
5.	5. How many cookies can you make from 18.0 cups of dough and 2.00 cu	ips of chips?
6.	6. How many cookies can you make from 400 chocolate chips, assuming	enough dough?

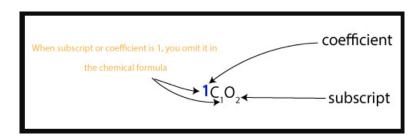
8. How many cups of cookie dough are needed to make 60. Cookies?

7. How many cookies can you make from 400. g of dough, assuming enough chips?

I think stoichiometry is _____

because

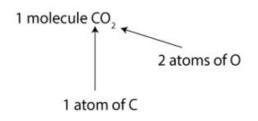
Assignment 7.2: Mole Ratio Notes

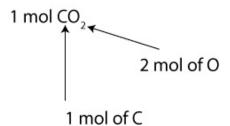

How to interpret a balanced chemical equation

You can interpret a balanced chemical equation in 2 ways:

- 1. In terms of atoms or molecules
- 2. In terms of moles

A bit of review:


- A molecule consists of at least 2 or more atoms bonded together:
- Example:



As you can see, a molecule usually consists of coefficients and subscripts. The coefficients can be interpreted as molecules or moles. While the subscripts can be interpreted as atoms or moles.

To interpret the chemical formula in terms of molecules, we will say 1 molecule of CO₂ consists of 1 atom of carbon (C) and 2 atoms of oxygen (O). Here is a picture of the interpretation:

To interpret the chemical formula in terms of moles, we will say 1 mol of CO₂ consists of 1 mol of carbon (C) and 2 mol of oxygen (O). Here is a picture of the interpretation:

Now, let's apply our understanding to interpret the following equation in terms of molecules and moles.

When hydrogen (H_2) reacts with iodine (I_2) to produce hydrogen iodide (HI), we can write a balanced chemical equation for the reaction as: $H_2 + I_2 -> 2HI$.

To interpret this equation in terms of molecules: we can say that 1 molecule of H_2 reacts with 1 molecule of I_2 to give 2 molecules of H_1 . Recall that the number 1 is implied when you don't see a number written in front of a chemical symbol or formula in a chemical equation.

To interpret equation A in terms of moles: we can say that 1 mole of H. molecules reacts with 1 mole of

It's sometimes confusing to interpret the mole this way. To ease this confusion a little, we can relate a mole to a dozen. For example, we can say that: 1 dozen H_2 molecules reacts with 1 dozen I_2 molecules to give 2 dozen HI molecules.

Chemists usually count individual atoms or molecules by weighing a bunch of them. This means that it's more useful to interpret the chemical equation in terms of moles. Once we do that, we can use the mole concept to work back to figure out the number of molecules in a substance.

Fill in the following the chart below using the information above:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

	N ₂ Consumed	H ₂ Consumed	NH ₃ Produced	Ratio N ₂ :H ₂ :NH ₃ (reduced)
For a single reaction, how many molecules of each substance would be consumed or produced?				
If the reaction occurred one hundred times, how many molecules would be consumed or produced?				
If the reaction occurred 538 times, how many molecules would be consumed or produced?				

	${ m N_2}$ Consumed	H ₂ Consumed	NH_3 Produced	Ratio N ₂ :H ₂ :NH ₃
If the reaction occurred 6.02×10^{23} times, how many molecules would be consumed or produced?				
How many <i>moles</i> of each substance would be consumed or produced in the previous situation?				

What is a mole ratio?

A **mole ratio** is the **ratio** between the amounts in **moles** of any two compounds involved in a chemical reaction. **Mole ratios** are used as conversion factors between products and reactants in many chemistry problems

Example: $4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{O}_3$

Ratio of Al : O_2 is 4 mole Al : 3 mole O_2

<u>Ratio of Al : Al₂O₃</u> is 4 mole Al : 2 mole Al₂O₃

Ratio of O_2 to Al_2O_3 is 3 mole O_2 : 2 mole Al_2O_3

Problem:

$$4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2\text{O}_3$$

If I have 6 moles of Al, how many moles of O₂ will react with it?

Solved: To solve the problem:

1. Find the given and the want.

Given
$$= 6 \text{ mol Al}$$

Want =
$$? \text{ mol } O_2$$

2. Find the mole ratio between given and want.

- 3. Use <u>dimensional analysis</u> to cover the given to the want. Use the mole ratio as the conversion factor, and remember to put the units you START with on the BOTTOM so they cancel out!
- 4. To calculate, multiply the top numbers and divide by the bottom numbers. (6 x 3 \div 4 = 4.5)

$$\frac{6 \, mol \, Al}{4 \, mol \, Al} \times \frac{3 \, mol \, O_2}{4 \, mol \, Al} = 4.5 \, mol \, O_2$$

Now try these Problems: (answers at end of packet)

- 1) $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
 - If I have 3.6 moles of O₂, how many moles of MgO can I make?
- 2) $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$
 - If I want to make 4.6 moles of MgO, how many moles of Mg do I need?
- 3) $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
 - If 4.5 moles of C₃H₈ combusts, how many moles of CO₂ will be produced?
- 4) $C_3H_8 + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O$
 - If I want to produce 7.65 moles of H₂O, how much O₂ should I use?

Assignment 7.3: Mole Ratio Practice

Before you begin, make sure you have completed assignment 7.1 and 7.2.

Please show your work for questions 1-14 on a separate sheet of paper. <u>Take a picture of your work and submit it to turnitin.com</u>. **You must show your work in order to receive full credit.**

- 1. Consider the following equation: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - a. The mole ratio for N_2 : H_2 is 1 mol of N_2 : 3 moles of H_2
 - b. The mole ratio for N₂: NH₃ is _____
 - c. The mole ratio for H₂: NH₂ is 3 mol of H₃: 2 mol of NH₃

Questions 3-12: Use the following chemical equation, it's already balanced.

- 2. What is the mole ratio of Na: Cl₂: NaCl?
- 3. What is the mole ratio of Na : Cl₂?
- 4. What is the mole ratio of Na: NaCl?
- 5. What is the mole ratio of Cl₂: NaCl?

Example: If the reaction consumes 3 moles of Na (start), how many moles of Cl₂ (end) will be consumed?

Na : Cl_2 mole ratio = 2 mol of Na : 1 mole of Cl_2 (from question

3 mol of Na (what you start with)	1 mol of Cl ₂	= 1.5 mol of Cl ₂ (what you end with)
	2 mol of Na	1

Your mole ratio will go in the middle.

Notice that the mol of Na goes on the bottom because it needs to cancel out the mol of Na in the top left.

Now multiply everything on the top together, divided by everything on the bottom \rightarrow (3 x 1 mol of Cl₂) / (2) = 1.5 mol of Cl₂

6. If the reaction consumes 7.5 moles of Na, how many moles of Cl₂ will be consumed?

Na: Cl₂ mole ratio = ______ (answer to question 4)

(what you start with)

(what you end with)

remember that your mole ratio goes in the middle

7. If the reaction consumes 4 moles of Cl₂, how many moles of Na will be consumed?

8. If the reaction produces 13.5 moles of NaCl, how many moles of Cl₂ will be consumed?

NaCl: Cl₂ mole ratio = ______ (answer to question 5)

9. If the reaction produces 23 moles of NaCl, how many moles of Na will be consumed?

Question 10-11: Use the following chemical equation, it's already balanced.

$$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$$

- 10. If the reaction consumes 5.9 moles of Fe₂O₃, how many moles of CO₂ are produced?
- 11. If the reaction consumes 2.21 moles of C, how many moles of Fe₂O₃ are consumed?

Question 12-14: Use the following chemical equation, it's already balanced.

$$C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$$

- 12. How many moles of O₂ will I need to produce 8.2 moles of H₂O?
- 13. How many moles of C₃H₈ will react with 13.2 moles of O₂?
- 14. How many moles of CO₂ will 0.52 moles of O₂ produce?

Optional challenge question: This equation is not balanced (you have to balance it first).

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

How many moles of H₂O will 7.7 moles of C₆H₁₂O₆ produce? How many grams of H₂O (use mole island)?

Answer Keys:

7.1

- 1. 30 cookies
- 2. 60 cookies
- 3. 87 cookies
- 4. 90 cookies
- 30 cookies (you're limited by how many chips you have, you have enough dough for 90 cookies, but not enough chips and cookies without chocolate chips are basically crackers).
- 6. 60 cookies
- 7. 10 cookies
- 8. 12 cups dough

7.2

- 1) 7.6 mol MgO
- 2) 4.6 mol Mg
- 3) 13.5 mol CO₂
- 4) 9.56 mol O₂

7.3

- 6) 3.75 mol Cl₂
- 7) 8 mol Na
- 8) 6.75 mol Cl₂
- 9) 23 mol NaCl
- 10) 8.85 mol O₂
- 11) 1.47 mol Fe₂O₃
- 12) 10.25 mol H₂O
- 13) 0.04 mol C₃H₈
- 14) 0.312 mol CO₂

challenge problem: 46.2 mol H₂O; 831.6 g H₂O